Organometallic chemistry of diphosphazanes

VIII *. Synthesis, spectroscopic studies and crystal structure of $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})\left\{\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{i} \mathrm{Pr}\right) \mathrm{P}(\mathrm{Ph})(\mathrm{DMP})\right\}\right]{ }^{* *}$, and its reactions with tertiary phosphines

R.P. Kamalesh Babu, S.S. Krishnamurthy and M. Nethaji
Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012 (India)
(Received August 7, 1992)

Abstract

The reaction of $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ with the unsymmetrical diphosphazane $\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{i} \mathrm{Pr}\right) \mathrm{P}(\mathrm{Ph})(\mathrm{DMP})(\mathrm{L})$ gives the complex $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})(\mathrm{L})\right]$ (2) in almost quantitative yield. The structure of the complex has been determined by an X-ray diffraction study. The compound reacts with PR_{3} (where $\left.\mathrm{R}=\mathrm{Ph}, \mathrm{OPh}\right)$ to give fac-[$\left.\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)(\mathrm{L})\right](\mathbf{3 a}, 4 \mathrm{a})$, which undergoes an intramolecular isomerization to afford mer- $\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)(\mathbf{L})\right](\mathbf{3 b}, 4 \mathrm{~b})$. Synthesis of $c i s-\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathbf{L})\right](\mathbf{1})$ and $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3} \mathrm{~L}\right]$ (2a) and their spectroscopic data are also reported.

1. Introduction

Diphosphazanes have attracted considerable attention in recent years as "short-bite" ligands in transition metal organometallic chemistry comparable in their versatility to the analogous bis-(phosphino)methanetype ligands such as dppm [1-3]. The method of synthesis used for diphosphazanes [4] lends itself to facile incorporation of other donor atoms in the ligand. We report below the synthesis of a new unsymmetrical diphosphazane viz. $\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{(} \mathrm{Pr}\right) \mathrm{P}(\mathrm{Ph})(\mathrm{DMP})(\mathbf{L})$, potentially a tridentate PPN donor ligand, and its molybdenum carbonyl complexes cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{~L}\right](1)$ and $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})(\mathbf{L})\right]$ (2) and $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathbf{L})\right]$ (2a). The structure of $\mathbf{2}$, as determined by X-ray crystallography, reveals bidentate coordination of the diphosphazane ligand through its phosphorus centres,

[^0]and the presence of a labile MeCN ligand bonded to the metal, which can be readily replaced by a tertiary phosphine ligand PPh_{3} or $\mathrm{P}(\mathrm{OPh})_{3}$.

2. Experimental details

All manipulations were carricd out under dry dinitrogen by standard Schlenk-tube techniques. Solvents were purified by standard methods. The unsymmetrical diphosphazane $\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{P}(\mathrm{Ph})(\mathrm{DMP})(\mathrm{L})$ was prepared by the reaction of $\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{PPhCl}$ [4] with 3,5-dimethylpyrazole in boiling benzene in the presence of triethylamine [5*]. The complexes cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{NHC}_{5} \mathrm{H}_{10}\right)_{2}\right]$ and $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ were prepared by published procedures [6, 7]. The NMR spectra were recorded as reported previously [8]. IR spectra were obtained with a Hitachi $750-50$ spectrometer. C, H and N analyses were carried out with a Heraeus CHN-O Rapid instrument. The FAB-mass spectrum was recorded at $25^{\circ} \mathrm{C}$ on a JEOL SX 102/DA-6000 Mass Spectrometer/Data system using argon ($6 \mathrm{KV}, 10 \mathrm{~mA}$) as the FAB gas and m-nitrobenzyl alcohol as the matrix. Only the most intense ions are reported.

3. Syntheses

3.I. cis-/Mo(CO) ${ }_{4}(\mathrm{~L}) /$ (I)

A mixture of cis-[$\left.\mathrm{Mo}\left(\mathrm{CO}_{4}\right)_{4}\left(\mathrm{NHC}_{5} \mathrm{H}_{10}\right)_{2}\right](0.20 \mathrm{~g}, 5.3$ $\left.\times 10^{-4} \mathrm{~mol}\right)$ and the ligand $\mathbf{L}\left(0.24 \mathrm{~g}, 5.4 \times 10^{-4} \mathrm{~mol}\right)$ was dissolved in 30 mL of dichloromethane and the solution was stirred for 30 min. Evaporation of the solvent, followed by crystallization of the residue from dichloromethane-petrol mixture (1:1), yielded 1 as a pale ycllow solid. (Yield $0.27 \mathrm{~g}, 80 \%$). M.p. $100^{\circ} \mathrm{C}$ (with dec.) Anal. Found: C. $55.5 ; \mathrm{H}, 4.6 ; \mathrm{N}, 6.8 . \mathrm{C}_{310} \mathrm{H}_{20}$ $\mathrm{MoN} \mathrm{O}_{4} \mathrm{P}_{2}$ calc.: C, $55.2 ; \mathrm{H}, 4.5 ; \mathrm{N}, 6.4 \%$ IR (Nujol): $\nu(\mathrm{CO}) 2030 \mathrm{~s}, 1920 \mathrm{~s}, 1910 \mathrm{bcm}{ }^{\prime} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: 7.26-8.18 (m, Ph); 6.06 (s, CH-DMP); 3.92 (m. CH${ }^{i}$ Pr); 2.43 (s, Mc-DMP); 2.26 (s , Me-DMP); 1.22 (d, ${ }^{3} J_{111}=7 \mathrm{~Hz}, \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}$); $0.05\left(\mathrm{~d},{ }^{3} J_{\mathrm{HI}}=7 \mathrm{~Hz}, \mathrm{Me}-\right.$ $\left.{ }^{i} \mathrm{Pr}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): 219.1(\mathrm{dd} .10, J(\mathrm{PC})=25.5$ $\mathrm{Hz}, \mathrm{CO}), 218.1(\mathrm{dd}, 9.9, J(\mathrm{PC})=29 \mathrm{~Hz}, \mathrm{CO}), 214.4$ $(\mathrm{t}, J(\mathrm{PC})=9 \mathrm{~Hz}, \mathrm{CO}) .207 .2(\mathrm{t}, J(\mathrm{PC})=8 \mathrm{~Hz} . C O)$.

3.2. $\mathrm{fac}-/ \mathrm{MotCO})_{3}(\mathrm{McCN})(\mathrm{L}) /(2)$

A solution of $\mathbf{L}\left(0.88 \mathrm{~g}, 2.0 \times 10^{-3} \mathrm{~mol}\right)$ in 25 mL of acetonitrile was added dropwise to a solution of fac$\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ (prepared in situ by heating $\mathrm{MorCO})_{6},\left(0.5 \mathrm{~g} .1 .9 \times 10^{-3} \mathrm{~mol}\right)$ in 20 mL of MeCN for 24 h) at $45^{\circ} \mathrm{C}$. The mixture was stirred for 30 min , concentrated in racuo to 20 mL , and kept at $-10^{\circ} \mathrm{C}$ overnight to give the title compound (2) as pale yellow crystal (Yield $0.97 \mathrm{~g}, 77 \%$). M.p. $180^{\circ} \mathrm{C}$ (with dec.). Anal. Found C, 55.5; H, 4.9; N, 8.5. C $3_{31} \mathrm{H}_{32} \mathrm{MoN}_{4} \mathrm{O}_{3} \mathrm{P}_{2}$ calc.: $\mathrm{C}, 55.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 8.4 \%$. IR (Nujol): $\nu(\mathrm{CO})$ 1938s, 1857s, $1791 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{i} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): 7.19-8.3$ (m, Ph); 5.9 (s. CH-DMP); 3.8 ($\mathrm{m}, \mathrm{CH}-{ }^{\mathrm{i}} \mathrm{Pr}$); 2.37 (s, Me-DMP); 2.21 ($\mathrm{s}, \mathrm{Me}-\mathrm{DMP}$); 2.19 ($\mathrm{s}, \mathrm{Me}-\mathrm{MeCN}$); $1.15\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, \mathrm{Me}{ }^{i} \mathrm{Pr}\right) ; 0.01 \quad\left(\mathrm{~d},{ }^{3} J_{\mathrm{HI}}=6.9\right.$ $\mathrm{H} \mathrm{z}, \mathrm{Mc}-\mathrm{Pr}$). Even traces of moisture in acetonitrile solvent lowered the yield of $\mathbf{2}$, and led to the formation of substantial quantities of $\mathbf{1}$.

3.3. fac-lMo(CO)(L)](2a)

3.3.1. Method A

A solution of $2\left(0.10 \mathrm{~g}, 1.5 \times 10^{-4} \mathrm{~mol}\right)$ in 20 mL of heptane was heated under reflux for 1 h . The title compound separated as a pale yellow solid, which was filtered off and washed with heptane (Yield 0.019 g, 20%). M.p. $170^{\circ} \mathrm{C}$ (with dec.). Mass spectral data: $m / z=627,\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{~L})\right]^{*} \quad(37): \quad m / z=571$, $[\mathrm{Mo}(\mathrm{CO})(\mathbf{L})]^{+}(100): m / z=543,[\mathrm{Mo}(\mathrm{L})]^{+}$(94). IR (Nujol): $\nu(\mathrm{CO}) 1925 \mathrm{~s}, 1832 \mathrm{~s}, 1814 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 6.8-7.9$ (m, Ph); 5.45 (s. CH-DMP); 3.4 ($\mathrm{m}, \mathrm{CH}-{ }^{i} \mathrm{Pr}$); 2.25 ($\mathrm{s}, \mathrm{Me}-\mathrm{DMP}$); 1.94 ($\mathrm{s}, \mathrm{Me}-\mathrm{DMP}$) $0.87\left(\mathrm{~d},{ }^{3} J_{1+1}=4 \mathrm{~Hz}, \mathrm{Me}-{ }^{-} \mathrm{Pr}\right) ; 0.84\left(\mathrm{~d},{ }^{3} J_{1 H 1}=4\right.$ $\mathrm{Hz}, \mathrm{Me}-{ }^{-} \mathrm{Pr}$).

3.3.2. Method B

A suspension of $1\left[0.20 \mathrm{~g}, 3.06 \times 10^{-4} \mathrm{~mol}\right]$ in 25 mL of heptane was heated under reflux for 24 h . A paleyeilow solid separated, and was filtered off and identified as 2 a from its IR spectrum [Yield $0.068 \mathrm{~g} .36 \%$].

Compound 2 a is highly sensitive to air, and decomposed upon storage even under nitrogen for several days, yielding the tetracarbonyl complex 1 and other unidentified products. In view of this instability of $\mathbf{2 a}$ satisfactory C , II, and N analyses could not be obtained.

3.4. mer- $/ \mathrm{Mo}(\mathrm{CO})_{:}\left(P R_{:}\right)(L) / / R=P h(3 b)$ and $R=O P h$ (4b) 1

A solution of $\mathrm{PPh}_{3}\left(0.094 \mathrm{~g} .3 .6 \times 10^{-4} \mathrm{~mol}\right)$ in 20 mL of benzene was added dropwise to $2(0.20 \mathrm{~g}, 3 \times$ $\left.10^{-4} \mathrm{~mol}\right)$ and the resulting yellow solution was stirred overnight. Solvent was removed in racuo to obtain a yellow oil. Dissolution of the oil in toluene: petrol (1:1) and cooling of the solution afforded crystals of $\mathbf{3} \mathbf{b}$ (Yield 0.22 g. 81%). M.p. $187^{\circ} \mathrm{C}$ (with dec.). Anal. Found: C, 65.7; H. 5.4; N, 5.5. $\mathrm{C}_{4} \mathrm{H}_{44} \mathrm{MoN}_{3} \mathrm{P}_{3} \mathrm{O}_{6}$ calc.: C. 64.1; II. 4.9: N. 4.7/t. IR (Nujol): $\cdot(\mathrm{CO}) 1974 \mathrm{~m}$, $1872 \mathrm{~s}, 1851 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 7.1-8.05$ (m, Ph): 5.94 (s, CH-DMP): 3.90 (m. CH- ${ }^{\mathrm{i}} \mathrm{Pr}$): 2.39 $(\mathrm{s}, \mathrm{Me}-\mathrm{DMP}) ; 2.11(\mathrm{~s}, \mathrm{Me}-\mathrm{DMP}) ; 1.09\left(\mathrm{~d} .{ }^{3} J_{\mathrm{HH}}=6.9\right.$ $\left.\mathrm{Hz} . \mathrm{Me}^{\mathrm{i}} \mathrm{Pr}\right):-0.31\left(\mathrm{~d},{ }^{5} J_{\mathrm{iHi}}=6.9 \mathrm{H} \not 工 \mathrm{Me}-{ }^{i} \mathrm{Pr}\right)$.

TABLE 1. Crystal data and intensity collection parameters for fac$\left.\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN}) \mathrm{L}\right)\right](2)$

Fomma	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{MoN}_{4} \mathrm{O}_{3} \mathrm{P}_{2}$
Molecular weight	666.5
Crystal system	Monoctinic
Space group	$\mathrm{Pa}_{1} \mathrm{c}$
χ	4
a(i)	10.18.25)
$h(\AA)$	(10,9472)
(A)	$19.08002)$
$\left.\beta C^{C}\right)$	$91.95(2)$
$\cdots\left(A^{3}\right)$	329183
S(000)	1279.8
Radiation (graphite monochromator)	Mo-K $\mathrm{K}^{(\lambda=0.71069 A)}$
Linear abs. coeft. (cm ',	4.82
Scan technique	(1) 20
0 range	1-25
Total no. of atlections	83.30
Unique reflections	5755
Observed feflectioms ($F_{4},>501 F_{4}$,)	40.37
R	0.08388
R_{0}	0.0408
Largest peak in final diff.	0.129
map (e ${ }^{\text {A }}{ }^{\text {a }}$)	

The analogous complex $\mathbf{4 b}$ was prepared from $\mathrm{P}(\mathrm{OPh})_{3}\left(0.111 \mathrm{~g}, 3.6 \times 10^{-3} \mathrm{~mol}\right)$ and $2(0.2 \mathrm{~g}, 3 \times$ $10^{-4} \mathrm{~mol}$). In this case, the reaction mixture was heated under reflux for 4 h (Yield $0.22 \mathrm{~g}, 76 \%$). M.p. $190^{\circ} \mathrm{C}$ (with dec.). Anal. Found: C, 61.5; H, 5.2; N, 5.5. $\mathrm{C}_{48} \mathrm{H}_{44} \mathrm{MoN}_{3} \mathrm{P}_{3} \mathrm{O}_{6}$ calc.: C, $60.8 ; \mathrm{H}, 4.7 ; \mathrm{N}, 4.4 \%$. IR (Nujol): $\nu(\mathrm{CO}) 1995 \mathrm{~m}, 1890 \mathrm{~s}, 1863 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 6.88-8.3(\mathrm{~m}, \mathrm{Ph}) ; 5.95$ ($\mathrm{s}, \mathrm{CH}-\mathrm{DMP}$); 3.9 (m, CH- ${ }^{\mathrm{i}} \mathrm{Pr}$); 2.37 (s, Me-DMP); 2.11 ($\mathrm{s}, \mathrm{Me}-\mathrm{DMP}$); $1.17\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{Me}-{ }^{\mathrm{i}} \mathrm{Pr}\right) ;-0.08 \quad\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7\right.$ $\mathrm{Hz}, \mathrm{Me}-{ }^{\mathrm{i}} \mathrm{Pr}$).

TABLE 2. Non-hydrogen atomic coordinates and isotropic thermal parameters $\left(\AA^{2} \times 10^{4}\right)$ for fac- $\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})(\mathrm{L})\right](2)$

Atom	x	y	z	$U_{\text {eq }}$
Mo	$0.1653(1)$	$0.3067(1)$	0.7910(1)	392(1)
P1	0.1519 (1)	$0.2420(1)$	0.9072(1)	388(4)
N1	0.3144(4)	0.2422(2)	$0.9282(2)$	432(12)
P2	0.3815 (1)	$0.2767(1)$	$0.8529(1)$	443(4)
C1	$0.2270(6)$	$0.3527(4)$	$0.7021(3)$	680(23)
O1	0.2654(6)	$0.3813(3)$	$0.6526(3)$	1200(26)
C2	$-0.0210(6)$	0.3211 (3)	$0.7620(3)$	546(19)
O2	-0.1301(4)	0.3342(3)	$0.7477(2)$	890(20)
C3	0.1509(5)	$0.4135(3)$	$0.8256(3)$	504(19)
O3	0.1369 (4)	$0.4790(2)$	0.8439(2)	725(17)
C10	$0.3667(6)$	$0.2242(3)$	1.0014(3)	608(19)
C20	$0.4905(8)$	$0.1685(4)$	1.0011(4)	1033(34)
C30	$0.4020(7)$	0.2982(4)	$1.0413(3)$	$710(24)$
N11	0.1089(5)	$0.1415(2)$	0.9104(2)	$563(16)$
N12	$0.2017(6)$	0.0863(3)	0.9331(3)	802(21)
C13	$0.1416(7)$	$0.0166(4)$	0.9235(5)	$913(30)$
C14	0.0153(9)	$0.0265(4)$	0.8981(5)	1076(38)
C15	-0.0052(7)	$0.1069(4)$	0.8888(4)	794(26)
C16	$0.2180(9)$	$0.0550(5)$	$0.9427(8)$	1866(69)
C17	-0.1112(8)	$0.1502(6)$	$0.8630(6)$	1367(46)
C21	$0.0713(5)$	0.2795(3)	$0.9839(2)$	423(13)
C 22	$0.0171(7)$	0.2315(3)	$1.0343(3)$	717(25)
C 23	$-0.0478(8)$	$0.2650(4)$	$1.0914(3)$	855(29)
C24	-0.0535(6)	0.3442(4)	$1.0975(3)$	$700(23)$
C25	$0.0033(6)$	0.3928(3)	1.0497(3)	550(18)
C26	0.0637(5)	$0.3612(3)$	$0.9937(3)$	$503(18)$
C31	$0.5068(5)$	$0.3483(3)$	0.8809(3)	535(19)
C32	$0.4691(5)$	0.4249(3)	$0.8918(3)$	628(21)
C33	0.5581(8)	$0.4793(4)$	$0.9194(4)$	901(30)
C34	0.6846(8)	0.4566 (5)	$0.9349(4)$	1029(35)
C35	$0.7243(7)$	$0.3833(5)$	0.9220(4)	1032(36)
C36	0.6371(6)	0.3282(4)	0.8944(4)	$856(30)$
C41	$0.4775(5)$	0.1995 (3)	0.8131(3)	625(23)
C42	$0.5568(7)$	0.2223(5)	0.7569(4)	995(30)
C43	$0.6232(10)$	$0.1637(9)$	$0.7213(6)$	1488(56)
C 44	$0.6073(11)$	$0.0864(8)$	$0.7386(7)$	1690(65)
C45	$0.5260(8)$	$0.0657(5)$	0.7928 (5)	1255(43)
C46	$0.4639(6)$	0.1220 (4)	0.8300(4)	849(28)
N51	$0.1732(4)$	$0.1839(3)$	0.7507(2)	553(15)
C52	$0.1768(6)$	0.1193(3)	$0.7377(3)$	605(21)
C53	0.1855(9)	0.0343(4)	0.7242(4)	1086(37)

3.5. Crystal structure determination of 2

A summary of the crystal data for complex 2 and some details of the structure determination are given in Table 1. The crystal was sealed in a Lindemann capillary to protect it from atmosphere during data collection. Intensity data were collected on an EnrafNonius CAD-4 diffractometer using graphite-monochromated Mo-K α radiation. Cell constants were obtained by least-squares refinement of the setting angles of 24 reflections in the range $19<2 \theta<25^{\circ}$. During the data collection, no decrease in intensity was revealed by periodic monitoring. Lorentz polarization corrections were applied to the intensity data, but no absorption correction was made.

The structure was solved by the Patterson Heavy atom method using the SHELXS-86 [9] program, and least-square refinements were performed by the fullmatrix method using SHELX-76 [10]. All hydrogen atoms were located from difference Fourier maps. All nonhydrogen atoms were refined anisotropically and hydrogen atoms isotropically. Non-hydrogen atom coordinates are given in Table 2.

4. Results and discussion

4.1. Synthesis and spectroscopic data

The mononuclear molybdenum tetracarbonyl derivative, cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{4}(\mathbf{L})\right](1)$ can be prepared by the displacement of piperidine from cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{NHC}_{5}-\right.\right.$ $\left.\mathrm{H}_{10}\right)_{2}$] by the diphosphazane ligand \mathbf{L} (Scheme 1). The chelated complex 1 has been characterized by elemental analyses, IR and ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectroscopic data. The infrared spectrum of 1 exhibits $\nu(\mathrm{CO})$ absorptions at 2030s, 1920s and $1910 \mathrm{~b} \mathrm{~cm}^{-1}$, that are characteristic of a $\mathrm{Mo}(\mathrm{CO})_{4}$ moiety bonded to a strong π-acceptor ligand, and are in the range observed for a similar type of diphosphazane complex [2b].

The ${ }^{31} \mathrm{P}$ NMR coordination shifts $\left(\Delta \delta=\delta_{\text {(complex) }}{ }^{-}\right.$ $\delta_{\text {(ligand) }}$) observed for this complex are 41.5 ppm and 39.0 ppm for the diphenyl-substituted phosphorus and the pyrazolyl-substituted phosphorus respectively (Table 3). These values are close to that observed for the complex cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{(} \mathrm{Pr}\right) \mathrm{PPh}_{2}\right\}\right][2 \mathrm{~b}]$.

The ${ }^{13} \mathrm{C}$ NMR spectrum displays four different chemical shifts for carbonyl carbons (Fig. 1). The signals centered at 219.1 ppm and 218.1 ppm show coupling constants (${ }^{2} J_{\mathrm{CP}}$) in the range 10 Hz and $25-29$ Hz ; these are assigned to the carbonyls in equatorial positions and trans- to the phosphorus atoms. The signals at 214.4 ppm and 207.2 ppm show coupling constants in the range $7-10 \mathrm{~Hz}$, and are assigned to the carbonyls in axial positions.

Reaction of $\mathrm{fac}-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}\right]$ with an equimolar quantity of the new unsymmetrical diphosphaz-
ane \mathbf{L} results in the quantitative formation of fac$\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})(\mathrm{L})\right](2)$ [Scheme 1]. The IR spectrum of 2 shows three carbonyl stretching vibrations at 1938 , 1857 and 1791, close to the values observed for the molybdenum [11] and tungsten [12] complexes of dppm. The 'H NMR spectrum shows two different resonances for the two methyl groups (0.0) ppom and 1.15 ppme of the isopropyl substituent owing to the presence of an adjacent chiral phosphorus centre. The high shielding of one of the merhyl groups (80.01) suggests that these protons lie in the shiclding zone of one of the phenyl groups on phosphorus. A single crystal X-ray crystallographic study supports this ondusion (see below).

The ${ }^{1} P$ NMR spectrum of 2 shows an AX pattern and the chemical shifts are shown in Table 3. The coordination shifts observed for this complex are 45.7 ppm and 39.4 ppm for the diphenyl-substituted phosphorus and the pyrazoly-substituted phosphorus respectively. Thus the PPh_{2} phosphorus atom in the tricarbonyl complex 2 is deshiched relative to that of the tetracarbonyl complex 1 , apparently because of the presence of the weakly coordinated acetonitrile ligand in place of a strong T-acceptor carbonyl ligand.

The tricarbonyl complex 2 was heated ander reflux in acetonitrile for 1 h to find out whether the pyrazolyl nitrogen would replace the coordinated acetonitrile ligand. After I h. signals resulting from the starting material 2 had disappeared from the ${ }^{31} P$ NMR spectrum, and only the signals from the tetracarbonyl complex 1 were observed. The tricarbonyl complex 2 is not stable in hot acetonitrile solution and undergoes a redistribution to give the stable tetracarbonyl complex 1. In contrast, heating a solution of 2 in beptane (a non-coordinating solvent) gives an insoluble pale-yellow compound 2 a in low yicld (20\%) along with the tetracarbonyl complex (1) as the major product Com-
pound 2 a shows three new carbonyl stretching vibrations in the IR spectrum at 1925.1832 and $1814 \mathrm{~cm}^{-1}$. This compound also exhibits NMR spectroscopic feat tures different from those of 2 (see section 2). In its mass spectrum the highest peak at $m / z=627$ can be assigned to the molectar ion fac- $\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathbf{L})\right]^{-}$. These results indicate that the diphosphazane in 2 a ats at a drdentate ligand, bonded through the two phosphorus atoms and the pyrazolyl pyridinic nitrogen atom. The shit in the carbonyl stretching vibration from $1791 \mathrm{~cm}^{\text {- }}$ for compound 2 , to $1814 \mathrm{~cm}^{\prime}$ for compound 2a. suppots the athove conclusion that the odonor acetontrile ligand is replaced by the weakly Taccepting pyrazoly nitrogen. Pyrolysis of the tetracabonyl comples ifor it h in boiling heptane also gives $2 \mathbf{a}$.

The ${ }^{31} P$ NMR spectrum of $2 a$ shows an $A X$ pattern. As a result of the tridentate coordination of the diphosphazane ligand zia the two phosphorus and pyridinic nitrogen atoms. the δ_{p} values for PPh_{2} and PPh(DMP) phosphorus nuck are very different from those observed for 2. More significanty, the pyrazolyl substituted phosphorus in $2 \mathbf{a}$ is deshielded to about 8 ppm, whereas the PPh_{2}, phosphorus is appreciably shieded (about 20 ppm). Nevertheless the PPh_{2} phosphorus in $2 a$ is deshelded relative to that in the free ligand.

4.2. X-roy structure of 2

The solid-state structure of 2 is established by X-ray crystallography. A perspective view of the molecule is shown in Fig. 2. Selected bond lengths and bond angles are shown in Tabic 4 . The diphosphazane ligand is coordinated to molybdenum in a chelating mode utilizing its two phosphorus donor sites. The pyrazolyl nitrogen is not involved in coordination 10 the metal. The

TABLE 3. ${ }^{3} \mathrm{P}$ NMR data for complexes 1 4b"

$\mathbf{L}: \mathrm{R}=\mathrm{i}-\mathrm{C}_{3} \mathrm{H}_{7}$

(ii)

2

2a \downarrow (v)

Scheme 1. (i) $\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{NHC}_{5} \mathrm{H}_{10}\right)_{2}$; (ii) $\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})_{3}$; (iii) heptane $96^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (iv) heptane $96^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (v) $\mathrm{PR}_{3}^{\prime}\left(\mathrm{R}^{\prime}=\mathrm{Ph}\right.$ or OPh).
acetonitrile ligand is present in the axial position transto a CO atom, and the other two carbonyls are present trans- to phosphorus atoms.

The coordination geometry of the complex is that of an octahedron with a slight distortion because of the small bite angle of the diphosphazane ligand (P1MoP2

Fig. 1. The ${ }^{13} \mathrm{C}$ NMR (100.6 MHz) spectrum (${ }^{13} \mathrm{CO}$ region only) of cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathbf{L})\right](\mathbf{1})$.

Fig. 2. ORTEP diagram of $\mathrm{fac}-\left[\mathrm{Mo}(\mathrm{CO})_{3}(\mathrm{MeCN})(\mathrm{L})\right](2)$.
angle is $64.2(1)^{\circ}$). The $\mathrm{P}-\mathrm{N}-\mathrm{P}$ angle is $102.5(2)^{\circ}$, close to that observed for the tetracarbonyl molybdenum diphosphazane complexes cis-[$\left.\mathrm{Mo}(\mathrm{CO})_{4} \mathrm{RN}\left(\mathrm{PX}_{2}\right)_{2}\right]$ [2b]. The geometry of the complex is similar to that observed for the analogous dppm tungsten complex fac-[W(CO) $\left.{ }_{3}(\mathrm{MeCN})(\mathrm{dppm})\right][12]$.

The $\mathrm{P} 1-\mathrm{N} 1$ bond distance $(1.689(4) \AA$) is slightly shorter than the P2-N1 distance ($1.715(4) \AA$). This difference is presumably because of the increased π bonding in the $\mathrm{P}(1)-\mathrm{N}(1)$ segment arising from the increased electron withdrawing effect of the dimethyl pyrazole group, as observed for the unsymmetrical diphosphazane ligand $\mathrm{Ph}_{2} \mathrm{PN}\left({ }^{\mathrm{i}} \mathrm{Pr}\right) \mathrm{P}\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ [2a]. The Mo-P1 bond length ($2.482(3) \AA$) at the pyrazole-substituted phosphorus is shorter than the Mo-P2 bond length $(2.515(2) \AA)$ at the diphenyl-substituted phosphorus; the distances are comparable to the M-P distances in cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left\{\mathrm{PhN}\left(\mathrm{P}(\mathrm{NHPh})_{2}\right)_{2}\right\}\right][13]$ and cis-[W(CO) $\left.\left.)_{4}{ }^{i} \mathrm{PrN}\left(\mathrm{PPh}_{2}\right)_{2}\right\}\right]$ [2b] respectively. In the tungsten dppm complex the mean W-P bond length is ($2.51 \AA$). Evidently the pyrazolyl-phosphorus acts as a slightly stronger π-acceptor ligand than the diphenylsubstituted phosphorus. The three Mo-CO bond lengths are $1.988(6), 1.973(6)$ and $1.934(6) \AA$, where the shortest distance pertains to the carbonyl ligand located trans- to the acetonitrile group. The axial acetonitrile ligand is slightly tilted towards the diphosphazane ligand (mean $\mathrm{N}-\mathrm{Mo}-\mathrm{P} 85^{\circ}$); this tilt is larger than that observed for $f a c-\left[\mathrm{W}(\mathrm{CO})_{3}(\mathrm{MeCN})(\mathrm{dppm})\right]$. The Mu-N bond distance, 2.221(5) \AA, is also longer than the corresponding distance in the tungsten dppm complex, $2.190(5) \AA$, suggesting that the acetonitrile ligand in 2 would be more labile.

4.3. Reactions of 2 with $P R_{3}$

The acetonitrile complex 2 reacts with triphenylphosphine or triphenylphosphite to yield initially $f a c-\left[\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)(\mathrm{L})\right](\mathbf{3 a}$ or $4 \mathbf{a})$, which undergoes intramolecular rearrangement to give the mer-[Mo$\left.(\mathrm{CO})_{3}\left(\mathrm{PR}_{3}\right)(\mathbf{L})\right](\mathbf{3 b}$ or $\mathbf{4 b})$ complex (Scheme 1). The reactions were monitored by ${ }^{31} \mathrm{P}$ NMR spectroscopy; the fac- and mer- complexes give clear AMX type spectra (Fig. 3). The intramolecular fac- \rightarrow mer- rearrangement is fast in the case of the PPh_{3} complex, and is essentially complete in 6 h at room temperature. In addition to the two AMX patterns, another AX pattern is observed that arises from cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}(\mathrm{~L})\right]$ (1) formed by the decomposition of the complex 2 .

In the reaction of $\mathrm{P}\left(\mathrm{OPh}_{3}\right)$ with 2, even after one day in solution at room temperature, the peaks result-

TABLE 4. Selected bond distances (A) and bond angles (${ }^{\circ}$) in fac- $\left[\mathrm{Mo}\left(\mathrm{CO}_{3}(\mathrm{MeCN})(\mathrm{L})\right](2)\right.$

Bond distances (\AA)		Bond angles (${ }^{\circ}$)	
Mo-P1	$2.482(2)$	C3-Mo-N51	177.7(2)
$\mathrm{Mo}-\mathrm{P} 2$	$2.515(2)$	C2-Mo-N51	93.7(2)
Mo-Cl	1.988(6)	C2-Mo-C3	84.1(2)
Mo-C2	$1.973(6)$	C1-MO-N51	$93.2(2)$
Mo-C3	$1.934(6)$	$\mathrm{C} 1-\mathrm{Mo}-\mathrm{C} 3$	$87.4(3)$
Mo-N51	$2.221(5)$	C1-Mo-C2	$92.3(3)$
P1-N1	$1.689(4)$	P2-Mo-N51	86.101)
P1-N11	$1.760(4)$	$\mathrm{P} 2-\mathrm{Mo}-\mathrm{C} 3$	$95.9(2)$
P1 C21	$1.817(5)$	$\mathrm{P} 2 \mathrm{Mo} \mathrm{C2}$	$167.1(2)$
N1-P2	$1.715(4)$	P2-Mo-Cl	100.6(2)
$\mathrm{N} 1-\mathrm{Cl} 10$	$1.509(7)$	Pl-Mo-N51	$84.2(1)$
P2-C31	1.827(5)	$\mathrm{Pl}-\mathrm{Mo}-\mathrm{C} 3$	$95.8(2)$
$\mathrm{P} 2-\mathrm{C4} 1$	$1.815(6)$	$\mathrm{P} 1-\mathrm{Mo}-\mathrm{C} 2$	102.9(2)
$\mathrm{Cl} 1-\mathrm{O} 1$	$1.143(8)$	P1-Mo-C1	164.6(2)
$\mathrm{C}_{2}-\mathrm{O}_{2}$	$1.156(7)$	$\mathrm{Pl}-\mathrm{Mo}-\mathrm{P} 2$	64.2 (1)
C3-O3	$1.174(6)$	Mo--P1-C21	127.3(2)
N11-Ni2	$1.388(7)$	Mo-P1-N11	$118.7(2)$
N11-C15	$1.353(9)$	Mo-Pl-N1	97.4(2)
N12-C13	$1.340(9)$	N11-Pl-C21	101.0(2)
C21-C22	$1.388(7)$	N1-P1-- 21	105.902
N51-C52	$1.123(7)$	$\mathrm{N} 1-\mathrm{Pl}-\mathrm{Nll}$	$103.7(2)$
		Pl NI Cll	122.1(4)
		$\mathrm{Pl}-\mathrm{Nl}-\mathrm{P} 2$	102.5(2)
		P2-N1-Cl0	134.9(4)
		Mo-P2-N1	$95.5(2)$
		$\mathrm{N} 1-\mathrm{P} 2-\mathrm{C41}$	109.902
		$\mathrm{N} 1-\mathrm{P} 2-\mathrm{C} 31$	105.9(2)
		Mo-P2-C41	$115.1(2)$
		Mo-P2-C31	126.5(2)
		C31-P2-C41	102.7(3)
		$\mathrm{Mo}-\mathrm{Cl}-\mathrm{O} 1$	$177.2(6)$
		Mo-C2-O2	175.3(5)
		$\mathrm{Mo}-\mathrm{C} 3-\mathrm{O} 3$	176.4(5)
		P1-N11-C15	128.4(4)
		P1 N11 N12	119.7(4)
		$\mathrm{Pl}-\mathrm{C} 21-\mathrm{C} 26$	118.8(3)
		P1-C21-C22	123.7(4)
		Mo-N51-C52	172.5(4)

Fig. 3. The ${ }^{31} \mathrm{P}$ NMR spectrum (81 MIF) of the products of the reaction of fac- $[\mathrm{Mof(O)},(\mathrm{MeCN}(\mathrm{L})](2)$ with PPh ; in benzene: (a) after 30 min ; (b) atter f h . (For assignment of the ohserved resonances see fable 3 .
ing from the initially formed fac- isomer are still seen. Complete conversion can be achieved by heating the solution under reflux in benzene for 4 h . The difference in the rate of fac \rightarrow mer- rearrangement for the PPh_{3} and $\mathrm{P}\left(\mathrm{OPh}_{3}\right)$ ligands parallels the relative rate of intramolecular isomerization of $\left[\mathrm{M}(\mathrm{CO})_{4} \mathrm{~L}_{2}\right\}\{\mathrm{L}=$ $\mathrm{PR}_{3}, \mathrm{P}(\mathrm{OR})_{3}$) complexes [14]. There are insufficient data to allow clear separation of the electronic and steric factors responsible for this difference between PR_{3} and $\mathrm{P}(\mathrm{OR})_{\text {s }}$ type ligands in isomerization reactions [14] but it is conceivable that steric factors dominate in the present case. (The Tolman cone angle for PPh_{3} is 145°, compared with 121° for $\mathrm{P}(\mathrm{OPh})_{3}[15]$).

In the mer-inomers. the DMP-substituted phosphorus is trans- to the PR_{3}, this is obvious from the $\mathrm{P}-\mathrm{P}$ coupling constants observed (Table 3).

Acknowledgment

We thank RSIC, Lucknow for obtaining the FABmass spectrum.

References

1 R.B. King, Ace Chem. Res., 13 (1980) 24.
2 (a) R.P. Kamalesh Babu. S.S. Krishnamurthy and M. Nethaji, Heteroarom Chem. 2 (1991) 477: (b) M.S. Batakrishna, T.K. Prakasha. S.S. Krishnamurthy, U. Siriwardane and N.S. Hosmane, J. Organomet. Chem. 390 (1900) 203: (c) M.S. Balakrishna, S.S. Krishnamurthy and H. Manohar. Organometalliss. 10 (1901) 2522.

3 (a) J.S. Field, R.J. Haines, J. Sundermeyer and S.F. Woolam, J. Chem. Soc., Chem. Commun., (1991) 1382; (b) J.T. Mague and M.P. Johnson, Organometallics, 9 (1990) 1254; (c) J. Ellermann, F.A. Knoch and K.J. Meier, Z. Naturforsch., $46 B$ (1991) 1699; (d) R. Uson, A. Laguna, M. Laguna and M.C. Gimeno, J. Chem. Soc., Dalton Trans., (1989) 1883.
4 R.J. Cross, T.H. Green and R. Keat, J. Chem. Soc., Dalton Truns., (1976) 1424.
5 Yield $60-70 \%$. Anal. Found C, 70.1; H, 6.9; N, 9.3. $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{P}_{2}$ calc.: C, $70.1 ; \mathrm{H}, 6.6 ; \mathrm{N}, 9.4 \%$.
6 D.J. Darensbourg and R.L. Kump, Inorg. Chem., I7 (1978) 2680.
7 (a) C.P. Tate, W.R. Knipple and J.M. Augl, Inorg. Chem., I (1962) 433; (b) R.B. King and A. Fronzaglia, Inorg. Chem., 5 (1966) 1837.

8 V. Sreenivasa Reddy, S.S. Krishnamurthy and M. Nethaji, J. Organomet. Chem., 438 (1992) 99.
9 G.M. Sheldrick, SHELXS-86, Univ. of Göttingen, Göttingen, 1986.
10 G.M. Sheldrick, SHELX-76, Univ. of Cambridge, Cambridge, England, 1976.
11 W.A. Schenk and G.H.J. Hilpert, Chem. Ber., 122 (1989) 1623.
12 D.J. Darensbourg, D.J. Zalewski, C. Plepys and C. Campana, Inorg. Chem., 26 (1987) 3727.
13 A. Tarassoli, H-J. Chen, M.L. Thompson, V.S. Allured, R.C. Haltiwanger and A.D. Norman, Inorg. Chem., 25 (1986) 4152.
14 J.A.S. Howell and P.M. Burkinshaw, Chem. Rev., 83 (1983) 557. 15 C.A. Tolman, J. Am. Chem. Soc., (1970) 2956.

[^0]: Correspondence to: Prof. S.S. Krishnamurthy.

 * Part VII, M.S. Balakrishna, R. Murugavel, S.S. Krishnamurthy, I.I. Mathews and M. Nethaji, J. Chem. Soc., Dalton Trans., (1993) 477.
 ** Abbreviations used: DMP $=3,5$-dimethyl, 1 -pyrazolyl; $\mathrm{dppm}=$ bis(diphenylphosphino)methane.

